Scanning Electron Microscopy

Scanning Electron MicroscopeElectron Microscopy is an extremely versatile tool which allows the study of both morphology and material composition from virtually all areas of science and technology.

The EM section has a Scanning Electron Microscope (SEM) fitted with an Energy Dispersive Spectrometer (EDS) for elemental analysis. High resolution Secondary Electron Imaging, Backscattered Electron Imaging, X-Ray microanalysis and X-Ray mapping are all possible. In addition, the SEM is equipped with a cryogenic stage allowing for the preservation of fluid phases in the samples, and analysis in situ if necessary.

A polarizing optical microscope fitted with a digital camera is also available for the analysis of thin sections of soil or rock.

Typical samples analysed by the EM Section include:

  • Biological (plants, fungi, bacteria, insects)
  • Geological (mineralogy, grain size, mineral relationships, porosity)
  • Fibres (glass, asbestos, natural, man made)
  • Powders and Dust

Secondary Electron Imaging

Secondary Electron ImagingA beam of electrons is scanned across the surface of the specimen; images are built up from low energy secondary electrons which reflect the topography of the sample. The benefits of SEM over conventional microscopy include very high resolution and greater depth of field at magnifications from x20 to x100,000.

 

Example image shows fungal hyphae of Telephora terrestris and a Nanhermannia sp. mite

 

Backscattered Electron Imaging

Backscattered Electron ImagingBackscattered electrons (BSE) provide an extremely useful signal for imaging in scanning electron microscopy as they respond to composition (atomic number or compositional contrast) and to local specimen surface inclination (topographic or shape contrast). BSE images obtained from flat polished surfaces reveal compositional changes due to variations in the average atomic number across the specimen.

 

Example image shows a Dolomite-cemented sandstone.

 

X-ray Microanalysis

The electron beam is finely focused onto the specimen resulting in characteristic X-rays being produced from a microvolume (approximately 1µm3) of the sample. These X-rays are detected by an Energy Dispersive Spectrometer (EDS) and the results plotted as a spectrum. Each element has its own ‘fingerprint’ of peaks which allows both a qualitative and quantitative determination of the elements present in the selected region of the sample. EDS is an essential tool in geological applications combining elemental composition and morphology to identify minerals. It also has uses with biological specimens for example, localising elements such as calcium, potassium or phosphorus.

Secondary Electron Imaging FungusExample image shows EDS spectrum of phosphorous-rich granules inside Telephora terrestris hyphae.

 

 

 

X-ray Mapping

Digital elemental distribution maps can be collected simultaneously with electron image acquisition thus giving a visual representation of the chemical distribution in the sample. X-ray mapping is performed using Position-tagged Spectrometry (PTS), a method whereby X-ray photons generated by the scanning electron beam are tagged with the position of their origin. From a PTS file, data can be extracted to form images, elemental maps and spectra. In PTS files a full spectrum is stored at each pixel, therefore additional elements can be mapped after the initial acquisition of the data.

X-ray MappingIn this example of sandstone the combination of various elemental maps allows to identify and visualise the distribution of minerals such as K-feldspar (silicon, aluminium, potassium), albite (silicon, aluminium, sodium) and dolomite (calcium, magnesium). The bright blue particles in the silicon map highlight quartz grains.

 

 

 

Instrumentation available:

  • Carl Zeiss SIGMA VP Analytical Field Emission Scanning Electron Microscope
  • Bruker QUANTAX 400 Energy Dispersive X-ray Spectrometer with Xflash 5030 Silicon Drift Detector
  • Quorum Technologies PP2000T cryo-SEM preparation system
  • Leitz Polarizing microscope equipped with a Spot ‘Insight’ digital camera (Diagnostic Instruments, Inc.)

 

 

SEM XRPD SEM

In 2010, Macaulay Analytical launched a new Scanning Electron Microscope and held a Technology Awareness Day. Slides from the presentations given at both the launch and Technology Awareness Day are available to download.

 

For more information about this section contact:

James Hutton Limited, Dundee: Invergowrie Dundee DD2 5DA Scotland +44 (0)1382 568 568 

James Hutton Limited, Aberdeen: Craigiebuckler Aberdeen AB15 8QH Scotland +44 (0)8449 285 428